Photovoltaik-Module schneller ummanteln
Autor: solarstrombauer (Helmut Thomas)
Presseinformation von FORSCHUNG KOMPAKT der Fraunhofer-Gesellschaft vom 5.04.2013
Solarzellen müssen viel aushalten: Schnee, heiße Sommertage, Regen und Feuchtigkeit. Um sie bestmöglich zu schützen, betten die Hersteller die Zellen in Kunststoff ein, meistens in Ethylenvinylacetat, kurz EVA.
Das Prinzip: Im ersten Schritt laminieren sie die Zellen. Dazu legen sie eine Folie um die Zellen und erhitzen diese. Ist der Kunststoff weich, wird der gesamte Stapel im Laminator zusammengepresst, so dass er gut um die Zellen herumfließt und sie umschließt. Dabei vulkanisiert der Kunststoff – er vernetzt also, es entsteht eine Art Gummi. Der Vorteil: In diesem Zustand ist das Material nicht mehr schmelzbar, es ist stabiler und schützt die Zellen besser vor mechanischen und thermischen Belastungen. Für die Vernetzung wird der Solarzellen-Kunststoff-Stapel im Vakuumlaminator auf bis zu 150 Grad Celsius erhitzt; diese hohe Temperatur gibt den »Startschuss« für die Vernetzung. Die Prozesszeiten für das Vulkanisieren sind allerdings recht lang: Etwa 20 Minuten muss der Zellenstapel im Laminator bleiben, manchmal auch länger, was die Produktionskosten in die Höhe treibt.
Laminieren in weniger als acht Minuten
Diesem Kostendruck können die Hersteller entweder prozessseitig oder materialseitig entgegenwirken, sprich: Sie können den Prozess selbst optimieren oder aber bessere Materialien verwenden. Forscher vom Fraunhofer-Center für Silizium-Photovoltaik CSP in Halle unterstützen Hersteller künftig auf der Prozessseite, gemeinsam mit den Kollegen der Firma LANXESS: »Wir haben den Laminationsprozess so modifiziert, dass er statt 20 Minuten nur etwa 7 bis 8 Minuten dauert, wir konnten also die Dauer des Gesamtprozesses um mehr als 50 Prozent reduzieren«, sagt Dr. Stefan Schulze, Leiter des Teams Polymermaterialien am CSP. »Damit können wir im Vergleich zum Standardprozess in der gleichen Zeit doppelt so viele Module auf einer Anlage laminieren, was sich direkt in den Produktionskosten je Modul niederschlägt.«
Als Vorbild diente den Forschern Drucktinte beim Zeitungsdruck, die durch eine UV-Lampe in wenigen Sekunden vulkanisiert. Ebenso funktioniert der Vernetzer, den LANXESS verwendet – aktiviert durch UV-Strahlung statt durch hohe Temperaturen vernetzt er den Kunststoff innerhalb weniger Sekunden bei gleichbleibender Qualität. Der Grund dafür liegt in den Kunststofffolien: Verwendet man die üblichen Additive im Kunststoff, muss man beim Mischen der Bestandteile darauf achten, ständig unterhalb der Vernetzungstemperatur zu bleiben – man muss also recht sanft mischen. Die entstehende Folie ist daher oft nicht sehr homogen. »Vernetzen die Additive dagegen über UV-Strahlung, können wir scharf mischen. Somit erzielen wir homogene Folien und damit eine bessere Vernetzung des Kunststoffes«, verdeutlicht Schulze.
Den UV-Vernetzungsprozess haben die Forscher vom CSP im Fraunhofer-Innovationscluster SolarKunststoffe entwickelt. Hier suchen sie Antworten auf folgende Fragen: Wie lässt sich der Prozess steuern? Welche Temperaturen sind notwendig? Und wie viel Strahlung braucht man? Die Mitarbeiter der Firma LANXESS haben sich dem Material gewidmet, also der Rezeptur und der Art und Menge des UV-Vernetzers. Eine Pilotanlage zur Vernetzung gibt es bereits am CSP: An ihr optimieren die Forscher nun die vier Parameter – die Strahlungsmenge, die Temperatur, die Lampenhöhe und die Vorschubgeschwindigkeit, mit der die Module unter den UV-Lampen durchfahren. »Der Prozess ist einsatzbereit«, sagt Schulze. Hohe Kosten für die Umrüstung ihrer Produktionsanlagen brauchen interessierte Hersteller nicht fürchten: Lediglich eine UV-Lampe müsste ergänzt werden.
Das Fraunhofer-Center für Silizium-Photovoltaik CSP
Das Fraunhofer CSP betreibt angewandte Forschung in den Themengebieten der Siliziumkristallisation, der Solarmodultechnologie und Solarwaferfertigung. Mit höchster Kompetenz entwickelt es neue Technologien von der Ingotherstellung bis zur Modulfertigung und beschäftigt sich mit der Entwicklung neuer Materialien entlang der Wertschöpfungskette. Ferner wird die Bewertung von Solarzellen und Modulen sowie die elektrische, optische und mikrostrukturelle Material und Bauteilcharakterisierung durchgeführt. Hierfür stehen hochmoderne Forschungs- und Analysegeräte zur Verfügung. Das Fraunhofer CSP ist eine gemeinsame Einrichtung des Fraunhofer-Instituts für Werkstoffmechanik IWM und des Fraunhofer-Instituts für Solare Energiesysteme ISE.
Steigende Energiepreise und die Verknappung fossiler Ressourcen sind treibende Faktoren bei der Entwicklung und Nutzung erneuerbarer Energiequellen. Eine große Herausforderung für die Photovoltaik-Branche – die wir gerne annehmen! Das Fraunhofer CSP arbeitet daran mit, dass alternative Energie zu gleichen Preisen wie konventioneller Strom angeboten wird.
Um dies zu erreichen bündeln wir in Halle (Saale) das Know-how zweier Institute: Das Fraunhofer-Institut für Werkstoffmechanik IWM bringt sein Know-how auf dem Gebiet der Optimierung und Bewertung von Silizium-Prozesstechnologien und Modulintegration mit ein. Das größte Solarforschungsinstitut in Europa Fraunhofer ISE, bietet seine Kompetenzen in der Materialherstellung, Solarzellen- und Modulentwicklung sowie Charakterisierung.
Das Fraunhofer CSP berät und stellt wissenschaftliches Know-how sowie technische High-Tech-Ausstattungen für Dienstleistungen zur Verfügung. Kommen Sie auf uns zu!
Das Fraunhofer CSP ist eine gemeinsame Einrichtung des Fraunhofer IWM und des Fraunhofer ISE.
Quelle und weitere Informationen unter www.csp.fraunhofer.de
Kontakt:
Fraunhofer-Center für Silizium-Photovoltaik CSP
Otto-Eißfeldt-Str.12 06120 Halle (Saale) Dr. Stefan SchulzeTelefon +49 345 5589-407